Effect of Benfotiamine on Advanced Glycation Endproducts and Markers of Endothelial Dysfunction and Inflammation in Diabetic Nephropathy
نویسندگان
چکیده
BACKGROUND Formation of advanced glycation endproducts (AGEs), endothelial dysfunction, and low-grade inflammation are intermediate pathways of hyperglycemia-induced vascular complications. We investigated the effect of benfotiamine on markers of these pathways in patients with type 2 diabetes and nephropathy. METHODS Patients with type 2 diabetes and urinary albumin excretion in the high-normal and microalbuminuric range (15-300 mg/24h) were randomized to receive benfotiamine (n = 39) or placebo (n = 43). Plasma and urinary AGEs (N(ε)-(carboxymethyl) lysine [CML], N(ε)-(Carboxyethyl) lysine [CEL], and 5-hydro-5-methylimidazolone [MG-H1]) and plasma markers of endothelial dysfunction (soluble vascular cell adhesion molecule-1 [sVCAM-1], soluble intercellular adhesion molecule-1 [sICAM-1], soluble E-selectin) and low-grade inflammation (high-sensitivity C-reactive protein [hs-CRP], serum amyloid-A [SAA], myeloperoxidase [MPO]) were measured at baseline and after 6 and 12 weeks. RESULTS Compared to placebo, benfotiamine did not result in significant reductions in plasma or urinary AGEs or plasma markers of endothelial dysfunction and low-grade inflammation. CONCLUSIONS Benfotiamine for 12 weeks did not significantly affect intermediate pathways of hyperglycemia-induced vascular complications. TRIAL REGRISTRATION: ClinicalTrials.gov NCT00565318.
منابع مشابه
Effect of Cysteine on Transforming Growth Factor β1 as the Main Cause of Renal Disorder in a Rat Model of Diabetic Nephropathy
Background and purpose: Glycation products, oxidative stress, and inflammation contribute to the development of diabetic nephropathy (DN) due to the elevation of transforming growth factor-β1 (TGF-β1). This study aimed at investigating the effect of Cysteine (Cys) on TGF-β in DN rat model. Materials and methods: In this experimental study, 40 male Wistar rats were randomly divided into four g...
متن کاملاثر گلوتامین بر شاخص های استرس اکسیداتیو، التهابی گلیکه و همچنین فعالیت سیستم گلیاوکسیلاز در موش های صحرایی دیابتی- آترواسکلروزی
Background and purpose: Vascular complications of diabetes are the most common causes of mortality in diabetic patients. Hyperglycemia, insulin resistance, dyslipidemia, glycation products, oxidative stress, and inflammation lead to atherosclerosis and diabetic nephropathy in diabetes. This research aimed at studying the effect of glutamine (Gln) on main causes of vascular complications in diab...
متن کاملEffect of Linalool on the Activity of Glyoxalase-I and Diverse Glycation Products in Rats with Type 2 Diabetes
Background and purpose: Hyperglycemia contributes to type 2 diabetes and diabetes vascular complications by reduction of the activity of glyoxalase-I (GLO-I) and elevation of glycation, oxidative stress, and inflammatory markers. Linalool is reported to have beneficial effects on glucose metabolism in animal models of diabetes, so, this study aimed at investigating the effect of linalool on the...
متن کاملSalvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
BACKGROUND/AIMS Glomerular endothelium dysfunction leads to the progression of renal architectonic and functional abnormalities in early-stage diabetic nephropathy (DN). Advanced glycation end products (AGEs) and receptor for AGEs (RAGE) are proved to play important roles in diabetic nephropathy. This study investigated the role of Salvianolic acid A (SalA) on early-stage DN and its possible un...
متن کاملAssessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats
Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...
متن کامل